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N-Slit Diffraction Pattern
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The diffraction pattern for particles passing through N slits is obtained by a
truncation assumption on the Gaussian wave function when passing the slits and
by pure wave propagation governed by the SchroÈ dinger equation with boundaries.
The standard limiting situations give the usual results. In case of a great number
of equal and equally separated slits the calculations are performed by considering
also the energy band structure induced by the periodic boundary geometry on
the initial conditions. The results, which are qualitatively satisfactory in both
cases, do not agree completely in general nor in the limiting cases.

1. INTRODUCTION

The study of the diffraction pattern for wave packets through slits is a
central means to reveal the distinguishing properties of quantum mechanics

(QM) (Feynman and Hibbs, 1965) such as the superposition principle of

physical states. It represents also an interesting situation in which to compare

the predictions of QM with those of other physical theories. In this connection

explicit calculations have been done to compare the predictions of QM with

those of the recent stochastic electrodynamics (SED) with spin (Cavalleri,
1997). The results, which have been obtained for one and two slits in the

two-dimensional case (Zecca and Cavalleri, 1997; Zecca, 1999), make use,

in a general mathematical framework, of an incoming Gaussian wave packet

to describe a beam of particles. The wave packet is assumed to be truncated

by the barriers when passing the slits and its time evolution after the slits is
approximated by a factorized SchroÈ dinger-like time evolution. By neglecting

possible electromagnetic and spin interaction of the electron with the slits,

a general diffraction pattern has been obtained that has the usual behavior
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for beam both narrow and large with respect to the slit aperture. By considering

also what seems to be the dominant interaction, that is, the interaction of the

electron with its image charge on the well of the slits, one finds, as already
predicted by SED plus spin (Zecca and Cavalleri, 1997), the existence of

lateral maxima on the QM diffraction pattern corresponding to the edges of

the slits. The quantitative relevance of that effect, even considering the spin

of the electron, is not decidable in the context of the theory and would require

experimental verification.

The mentioned treatment easily generalizes to the N-slit case, which is
done in the first part of this paper. In case of N large (practically infinite)

and for equal and equally spaced slits, a problem arises that seems to be of

interest. In the mentioned description the wave packet moves in the x, y plane

parallel to the x axis and has a nontrivial probability distribution of the

momentum in the y direction along which the N slits are disposed.

Accordingly, near the slits, the particle is subjected, in the y direction,
to a nontrivial periodic potential, whatever kind of interaction one considers.

When it emerges after the slits, the particle must therefore have an energy

distribution in the y direction compatible with the energy band structure

characteristic of a one-dimensional motion in a periodic potential.

It is the object of the second part of the paper to establish the effect of
the periodic potential on the diffraction pattern. Following the general scheme

(Zecca and Cavalleri, 1997), the particle is considered to be subjected to a

periodic potential which is assumed to be the infinite limit of a finite periodic

potential barrier. The explicit momentum dependence of the energy in the y
direction is then determined from limiting values of well-known results

concerning the energy band spectrum in the case of a one-dimensional particle.
This information, together with the truncation assumption, is put into the

initial condition of the wave packet, which is still assumed to evolve in a

factorized form after the slits according to the free SchroÈ dinger dynamics.

The diffraction pattern that is obtained in general is different according as

one considers periodic potentials or not. In the limiting cases of a beam of

particles large or narrow with respect to the slit aperture, the difference of
the profile of the diffraction pattern is more evident. Since the considerations

relative to the periodic potential cannot a priori be ruled out, being the

consequence of the geometry of the boundaries, an experimental verification

of the results would be of interest.

2. N-SLIT DIFFRACTION FROM SCHROÈ DINGER QM

The diffraction problem is considered in the two-dimensional case. The

geometry of the slits is such that the region S which is inaccessible to the

particle is the subset of the (x, y) plane defined by
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S 5 {(x, y) ) ) x ) , d , y P ø
N

i 5 0

(di 1 bi , di 1 1)} (1)

where d0 5 2 ` , bi . 0, dN 1 1 5 ` , di 1 bi , di 1 1, i 5 1, 2, . . . , N. The
slits therefore have an aperture bi and the contiguous slits bi 1 1 and bi are

separated by a single barrier whose dimension in the y direction is di 1 1 2
di 2 bi. The depth of the barriers is taken constant and equal to 2 d . For our

consideration one can choose d ® 0. In the y direction, the set of the slits

is given by the multi-interval set

I 5 ø
N

j 5 0

[dj , dj 1 bj] (2)

The motion of the particle in the above geometry can be described as that

of a free SchroÈ dinger motion outside S and subjected to the boundary condition
of an infinite potential barrier in the region S. The solution of the correspond-

ing SchroÈ dinger equation could not be separated in general into an x and a

y dependence. However, we approximate the motion of the particle coming

from the remote x region by a factorized Gaussian wave packet whose

expression is assumed as

c (x, y, t) 5 c (x, t) f ( y, t) (3)

c (x, t) 5 a 1/2

exp F 2
a 2

2

(x 2 x0 2 " k0x t/m)2

1 1 i " a 2 t/m
1 ik0x (x 2 x0) 2 i

" k2
0x t

2m G
[ p 1/2 (1 1 i " a 2t/m)]1/2 (4)

f ( y, t) 5 F b
p 1/2 (1 1 i " b 2t/m) G 1/2

exp F 2
b 2

2

( y 2 y0)
2

1 1 i " b 2t/m G (5)

To describe the motion of the wave packet after the slits, if no other interactions

are considered, we generalize what was done for the cases N 5 1, 2 (Zecca
and Cavalleri, 1997; Zecca, 1999). By the truncation assumption, the wave

function c (x, y, t) immediatly after the slits, at a time taken as the initial

time t 5 0, is assumed to have the form c I(x, y, 0) 5 c a(x, 0) x I( y) f ( y, 0),

where c a(x, 0) is the function c (x, 0) in equation (4) with x0 5 a, and x I ( y)

is the characteristic function of the set I. After the slits a free SchroÈ dinger
time evolution with initial state c I(x, y, 0) is assumed. At time t, the wave

function has therefore the form

c I (x, y, t) 5 c a(x, t) f I (y, t) (6)
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where c a(x, t) is again the function in equation (4) with x0 5 a, and

f I (y, t) 5
1

2 "
b 1/2

p 5/4 # 5

dpy exp F i

" 1 pyy 2
p2

yt

2m 2 G
3 # I

d j exp F 2
i

"
py j 2

b 2

2
( j 2 y0)

2 G (7)

5 F m b
p 3/22i " t G 1/2

exp F y2 im

2 " t
2 y2

0
b 2

2 G
3 # I

exp F 2 j 2 1 b 2

2
2

im

2 " t 2 1 j 1 y0 b 2 2
imy

" t 2 G d j (8)

By integrating over j , one gets

f I (y, t) 5
1

2 F m b
p 1/2(m 1 it " b 2) G 1/2

exp F 2
m b 2

2(m 1 it " b 2)
( y 2 y0)

2 G
3 o

N

j 5 1 H erf F im( y 2 dj 2 bj) 2 b 2 " t( y0 2 dj 2 bj)

(2 " t( " t b 2 2 im))1/2 G
2 erf F im( y 2 dj) 2 b 2 " t( y0 2 dj)

(2 " t( " t b 2 2 im))1/2 G J (9)

where erfz 5 (2/ ! p ) * z
0 exp( 2 t2) dt is the error function (Abramovitz and

Stegun, 1960).

3. N-SLIT QM DIFFRACTION: LIMITING CASES

3.1. Suppose the incoming wave packet is narrow with respect to the slits:

D y 5
1

b ! 2
¿ bj , j 5 0, 1, 2, . . . , N (10)

By considering the dominant term for b large in the argument of the erf

function, one gets from (9)

f I f ,
I > p 2 3/2 b m

(m2 1 " 2t2 b 4)1/2

3 exp F 2
m2 b 2( y 2 y0)

2

m2 1 " 2t2 b 4 G Z o Nj 5 1 #
(y0 2 dj) b / = 2

(y0 2 dj 2 bj) b / = 2

dt e 2 t2 Z
2

(11)
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Since the contribution of the integrals in (11) is negligible unless y0 P I, the

situation describes an incoming narrow wave packet that passes essentially

undisturbed through the slits or is reflected toward the negative x axis
according to the incoming y probability distribution is centered in correspon-

dence to one of the slits or not.

3.2. In the case of an incoming wave packet that is very indeterminate

in the y position

D y 5
1

b ! 2
À bj , j 5 1, 2, . . . , N (12)

by setting b 2 5 0 and neglecting the term 2 im/(2 " t), we see that the integral

over j in (8) takes the value

2 " t

my o
N

j 5 1

exp F 2 i
my

" t 1 dj 1
bj

2 2 G sin 1 mbj

2 " t
y 2 (13)

By using this result in (8) one gets

f I (y, t) f ,
I ( y, t) > 2 b " t

m p 3/2 Z o
N

j 5 1

3 exp F 2 i
my

" t 1 dj 1
bj

2 2 G sin(mbjy/2 " t)

y Z
2

(14)

which represents the interference pattern produced by the N slits. It has

a quite complicated structure unless the geometry of the slits has some

regularity property.

3.3. Suppose now b 2 5 0, the slits have the same aperture b, and the

barriers all have the same dimension dj 1 1 2 (dj 1 bj) 5 d, j 5 1, 2, . . . ,

N, so that

bj 5 b, j 5 1, 2, . . . , N
(15)

dj 5 d1 1 ( j 2 1)(d 1 b)

By using the relations (15), we can calculate the expression (13) to obtain

2 " t

my
sin 1 mb

2 " t
y 2 exp F 2

im

" t 1 d1 1
b

2 2 y G
3

1 2 exp[ 2 im(b 1 d )Ny/ " t]

1 2 exp[ 2 im(b 1 d )y/ " t]
(16)
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so that from (8), (16) one gets

f I f ,
I > b2m b

2 p 3/2 " t
exp ( 2 y2

0 b 2) 1 sin mby/2 " t

myb/(2 " t) 2
2

3
1 2 cos [mN(b 1 d )y/t " [

1 2 cos [my(b 1 d )/t " ]
(17)

which represents the interference pattern of N equal slits of apeture b equally

separated by a distance b 1 d. The expression (17) reduces for N 5 1, 2 to
the corresponding results previously obtained (Zecca and Cavalleri, 1997;

Zecca, 1999).

4. REGULAR LATTICE OF SLITS

The case of equal slits of aperture b equally spaced at a distance b 1
d by barriers of width d (the geometry of Section 3.3) can be further studied

in the case of N very large, practically infinite. Since the incoming wave

packet has a nontrivial probability distribution of the y momentum, it seems

of interest to consider the effect of the boundary condition given by the
periodic structure of the barrier. The effect can be described by the action

of an infinite periodic potential in the y direction, which according to the

general scheme (Zecca and Cavalleri, 1997), can be seen as the limit V0 ®
` of the potential V( y) defined by

V( y) 5 H 0 if 0 , y , b

V0 if b , y , b 1 d
(18)

and of period b 1 d. No other interactions are considered. This implies that

near the slits the energy spectrum in the y direction cannot be that of a free

particle as assumed in (7), but must be compatible with the band structure
of the energy spectrum W of a one-dimensional SchroÈ dinger particle with

periodic potential. It is well known that such an energy band structure is

determined by the constraint (see e.g., Merzbacher, 1970)

) cosh kÅ yd cos kyb 1
kÅ 2y 2 k2

y

2kÅ yky

sinh kÅ y d sin kyb ) # 1 (19)

where " ky 5 ! 2mW , " kÅ y 5 ! 2m ) W 2 V0 ) (W , V0). An elementary study

for large V0 shows that the constraint (19) is satisfied in the neighborhoods
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of kyb 5 n p , n 5 6 1, 6 2, 6 . . . , and that in the limit V0 ® ` the allowed

energy values are

Wn 5
( " p n/b)2

2m
, n 5 0, 6 1, 6 2, 6 . . . (20)

In the limit of infinite barrier we assume therefore that near the slits the
energy spectrum of the particle in the y direction is given by the step function

W( py) 5
( " p /b)2

2m o
`

n 5 0

n2{ x [n p " /b,(n 1 1) p " /b) ( py) (21)

1 x ( 2 (n 1 1) p " /b, 2 n p " /b] ( py)}

x [ a , b )( py) is the characteristic function of the interval [ a , b ). To determine

the diffraction pattern after the slits, we assume the time evolution scheme

of Section 2, where besides the truncation assumption, we assume the energy

band spectrum (21) on the initial condition. This amounts in calculating,

instead of (7), the expression

f I( y, t) 5
1

2 "
b 1/2

p 5/4 # 5

dpy exp F i

"
( pyy 2 W( py)t) G # I

d j

3 exp F 2
i

"
py j 2

b 2

2
( j 2 y0)

2 G (22)

with W( py) now given by (21). One gets

f I (y, t) 5
b 1/2

2 " p 5/4 # I

d j exp F 2
b 2

2
( j 2 y0)

2 G o
`

n 5 0
exp F 2

it

2m " 1 p "
b 2

2

n2 G
3 1 #

(n 1 1) p " /b

n p " /b

1 #
2 n p " /b

2 (n 1 1) p " /b 2 dpy exp F i

"
py( y 2 j ) G (23)

and hence by performing the integrations one has the general result

f I 5
2 b 1/2

p 5/4 # I

d j exp F 2
b 2

2
( j 2 y0)

2 G o
`

n 5 0 H exp F 2
it

2m " 1 p "
b 2

2

n2 G
3

sin ( p ( y 2 j )/2b)

y 2 j
cos F 1 n 1

1

2 2 p
b

( y 2 j ) G J (24)

The last integral can be calculated in the usual limiting situations.
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4.1. Suppose D y 5 1/ b ! 2 ¿ b or b ® ` . Since exp[ 2 b 2 ( j 2 y0)
2/2]

is proportional, for large b , to d ( j 2 y0), then if y0 ¸ I, one gets zero from

(24), while if y0 P I, one obtains

f I f ,
I > 2 p 1/2

b b2

sin2 ( p /2b)( y 2 y0)

[( p /2b)( y 2 y0)]2

3 Z o `n 5 0
exp F 2

it " p 2

2mb2 n2 G cos F 1 n 1
1

2 2 pb ( y 2 y0) G Z 2(25)

If y0 P I, the diffraction pattern therefore has at time t the profile (25) in

the y direction, which has a complex structure, but that for b small is still

peaked around y 5 y0.

4.2. Suppose now D y 5 1/ b ! 2 À b or b small. By setting b 2 5 0, the
expression (24) becomes

f I 5
b 1/2

p 5/4 o
`

n 5 0

exp F 2
it " p 2

2mb2 n2 G
3 o

j #
dj 1 b

dj

d j
sin[(n 1 1)( p /b)( y 2 j )] 1 sin[n( p /b)( y 2 j )]

y 2 j
(26)

or, in terms of the sine integral Si(z) 5 * z
0 dz sin z/z,

f I 5
b 1/2

p 5/4 o
`

n 5 0

exp F 2
it " p 2

2mb2 n2 G o
j H Si F (dj 1 b 2 y)(n 1 1)

p
b G

2 Si F (dj 2 y)(n 1 1)
p
b G 1 Si F (dj 1 b 2 y) n

p
b G

2 Si F (dj 2 y)n
p
b G J (27)

By considering the qualitative behavior of the sine integral function (Abra-
movitz and Stegun, 1960), it appears that the dominant contribution in equa-

tion (27) comes from the lowest n values. The contribution relative to n 5
0 can be obtained directly from (24) with b 2 5 0:

f I 5
b 1/2

p 5/4 o
j #

dj 1 b

dj

d j
sin( p /b)( y 2 j )

y 2 j
(28)
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and for b small

f I 5
b 1/2

p 5/4 b o
j

sin( p /b)( y 2 dj 2 b/2)

y 2 dj 2 b/2
(29)

which represents an interference of elementary amplitudes of single slit.

5. REMARKS

In the previous sections the diffraction pattern of particles through N
slits has been calculated based on the pure truncation assumption and SchroÈ d-

inger wave propagation. In case of N large the calculations have been per-

formed by also taking into account the periodic boundary structure of the

barrier. This has been done by giving to the particle an energy band structure

in the y direction when passing the slits. The results obtained are given in
(9) and (24), respectively, and are difficult to compare in general. In the case

of an incoming wave packet with D y large with respect to the slit aperture

the results obtained in the two different ways are given in (17) and (27). The

essential feature is that in equation (17) (absence of periodic potential) there

is a dominating structure typical of the diffraction pattern through a single

slit, while in the case of a periodic potential this structure is present corres-
ponding to every slit [compare also with equations (28), (29)].

In the case of a beam of particles with D y ¿ b the different patterns

are given equations (11), (25). As expected, in both cases the diffraction

pattern is peaked around the correct position, but in equation (11) the profile

is Gaussian-like, while in equation (25) it is similar to that through a single

slit. The results make questionable the correctness of the energy band structure
approach, which, however, has the strength of being based on boundary

conditions. It would be of interest to decide whether the periodic potential

assumption has an experimental counterpart.
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